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LETIER TO THE EDITOR 

AC conductance of an interacting quantum dot: 
single-electron-level spectroscopy 
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t ?he Jack and Pearl Resnick Institute of Advanced Echnology, Department of Physics, 
Bar-Ilan Universily, Ramat-Gan 52900, Israel 
$ Depaament of Physics, Ben-Gulion University, Beer-Shew, Israel 

Received 25 Janualy 1993 

Abstract. We calculate the AC and Dc current lhmugh a quantum double-barrier 
hetemstmcture laking into account Coulomb interactions in the well. ?he AC mnductance 
has a periodic dependence on the external field frequenw corresponding to the single- 
elecmn-level spacing, and as a function of the leads' chemical potential wth a period 
determined by the interadion. These two different periods enable probing of the WO 
characteristic energy scals of the quantum-dot slmcture. 

Pansport properties of a quantum dot weakly coupled to external leads [l] have lately 
been the subject of intense experimental [24] and theoretical [U] investigation. 
Experimental results obtained for the DC conductance of narrow-channel systems [2- 
41 exhibit several striking features, such as periodic conductance oscillations, magnetic 
field dependence of the conductance peaks, and irregular temperature dependence. 
The periodic conductance oscillations are the result of the charging energy of the 
dot 15-71, but in order to explain the magnetic and temperature dependences of the 
conductance it is important to take into account the interplay between two relevant 
energy scales in the quantum dot: the charging energy of the dot, and the spacing 
of the single-electron energy levels. This has recently been pointed out by Meir and 
co-workers [SI and, independently, by Beenakker [SI. 

Very recently several experimental groups have been considering performing 
measurements of the current in narrow-channel devices when an external AC field 
is also applied [9]. A possible realization of such an experiment is placing the 
quantum-dot device in a wave guide. Though several theoretical studies for the AC 
conductance of a narrow channel have been presented [10-14], to the best of our 
knowledge, none have incorporated the effect of electron-electron (e-e) interactions 
in the dot. 

In this letter we shall study the influence of an external AC electric field on the 
current through a quantum dot. In our calculations we shall use a Hamiltonian 
in which the quantum dot weakly coupled to external leads is modelled as a one- 
dimensional double-barrier quantum well. The full electronic spectrum in the well is 
taken into account, as well-as e-e interactions. The external field and the hopping 
probabilities into the dot are treated to first order in their respective amplitudes. In 
the absence of an A c  field we qualitatively recover the current behaviour predicted 
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by Meir and co-workers [SI. We predict an AC conductance which has both a real 
part which corresponds to the component of the current which is in phase with the 
external field, and an imaginary part Each component Q influenced in a different way 
by the Coulomb interaction energy and the single-electron spectra. This dependence 
gives a very accurate new experimental tool for the measurement of the single-particle 
energies in an interacting system. 

For the typical experimental set-up the chemical potential in the leads (pyR) for 
the left (right) lead) is determined by applying an external gate voltage over the leads. 
The DC current is a function of the chemical potential difference AV = pL - pR, 
md the absolute value of the chemical potential pv An additional external AC 
electric field E, cos(w,t) is applied. The energy scales resulting from the electronic 
confinement in the quannun-dot structure have an extremely important role in 
characterizing the transport properties of the system. The spacing of the single- 
electron levels is of the order of At, % 0.05 mex for a typical quantum dot [3]. The 
second energy scale is the charging energy of the dot e2/C (C is the capacitance of 
the dot), which is typically an order of magnitude larger then Ar,. These energy 
scales have also an important influence on the frequency dependence of the AC 
current. The typical AC frequencies are up to several GHz [9] which correspond to 
energies of the order of Ae,. 

Tb describe this experimental set-up we shall use the following model Hamiltonian 
[S, 161 

H =  H”+ HI+ H 2 +  H3 (1) 

for which 

k P 

where ek (e,) are the energy levels of the particles in the left (right) lead, and 
ea are the dlscrete single-electron energy levels in the well. The next term in the 
Hamiltonian corresponds to the tunnelling between the leads and the well, and is 
given by 

where the hopping amplitudes Tk(p),p are determined by the matrix elements of the 
left (right) barrier potential between the eigenstate in the well (la)) and the state 
in the corresponding lead (Ik(p))) .  We note that T has no imaginary components. 
Due to the application of an AC electric field we have an additional term in the 
Hamiltonian: 

~ 2 =  [ C g , a a L c a  - ~ g p , , b t ; c a  + ~ g a , , c i c T ] ~ o a ( w o t )  +HC (24  
k , ,  w a., 

where gk(p ) ,p  = (!+)le - .la) are the matrix elements of the electric potential in 
the bamer, which has a form of a dipole moment [17]. The minus sign in the second 
term of H2 is in order to keep the same notation for the left and right barriers 
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(for the right barrier the external potential in the calculation of g is -e .  2). The 
third term represents transitions between states in the well, where g,,? = (ale-217). 
There are two main reasons for taking the influence of the external AC electric field 
in the barrier region also. The contribution of the electric field in the well to the 
tunnelling current is relatively small as long as w, < Ae,. On the other hand once 
the extemal field frequency is of the order of the single-electron level spacing the 
main contribution to the AC conductance comes from the well’s polarizability, as will 
be discussed later. Therefore, the electric field in the barrier plays the main role 
in describing the AC tunnelling current. The second reason is that we shall use a 
Kubo-like formalism [IS, 161 for which the perturbation is proportional to the local 
current density, which is well defined (in this model) only at the bamers. The e-e 
interactions are considered only in the well [SI, and are taken in the following way: 

corresponding to the usual Coulomb blockade form. The capacitance C of the well 
is taken to be slowly varying around the Fermi level of the well [S, SI. 

The current which flows through the barriers to fust order in the electric field is 
defined as [15,16] 

f 

IL(R) = -(+lei/ df ( [Nq~) ( t ) ,  H,(t’) + Hz(t’)l) (3) 
-m 

where for the left lead 

t (4) t 
N L ( d )  = i[NL(t),Hl(t)l = ic[Tk,eukc, - Tk,,c,ukl 

is the change of the total charge in the left lead, and NR is similarly defined. In 
equation (4) we have neglected the term [ N L ( t ) , H 2 ( t ) ] ,  since we are interested in 
the linear response to the external AC field. 

The chemical potential in the well pw is determined from the condition that the 
DC current through the system is homogeneous, i.e. IL = I ,  [NI. Following Mahan 
[16] we define the left barrier Matsubara response function 

(5) 
1 

xLW(iwm) = C ~ k , , j r C ~ L ( k , i p , ) ~ w ( ~ ~ , i p ~  -k,l 
k,, ‘P n 

where w, = 2mn/p (p  is the inverse temperature) is the bosonic Matsubara 
frequency, and pn = (2n + I)n/P is the fermionic frequency. Gqw, are the 
corresponding Matsubara Green functions in the left lead (well). Dk,, = Ti,, 
for the DC component of the current, and Dk,, = Tk,,gk,, for the AC part. For the 
right barrier XRw is similarly defined. 

We assume that the electrons in the leads can be considered as free electrons; 
hence for the left lead GL(k,ip,) = (ip, - & ) - I ,  fk = ck - pL The effect of 
e-e interactions in the well is considered by taking the fist-order corrections to the 
electron’s self-energy E,, therefore Gw(cu,ip,) = (ipc-ta-EN)-’. The dominant 
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contribution to C, is from the direct term (the existence of a net negative charge in 
the well due to the additional electrons that tunnel into the well, which is the well 
hown Coulomb blockade [l]). Under these assumptions C, = NeZ/C; N is the 
number of excess electrons in the well. 

Using our previous definitions for the current (equation (3)), one obtains the 
following result for the DC part of the current: 

I? = -2e Im xE&(pW - pL) (6) 

which is equal to I$ as follows from our definition of pw 
The most interesting behaviour is encountered when the chemical potential 

difference is smaller than the energy mst of adding an additional electron to the 
well. In this case for low temperatures (compared with the singleelectron level 
spacing) one can easily deduce that pw follows the right lead chemical potential pR 
as long as there is no interacting electronic level in the range A V  above pw Once 
such a level enters this range pw joins it. In the high-temperature limit pw is simply 
in the middle of AV. 

0.5 

0.4 

0 3  

I d.c 

0.2 

0.i 

a 

Figure l. The DC current (in arbitraxy units) as a function of the chemical potential of 
the left lead p ~ .  The full cuwe corresponds lo a temperature higher lhan the single-' 
electron level spacing, 1/p = O.Z(e*/C). The broken curve represenls a temperature 
lower than this level spacing, l/p = 0.05(eZ/C). 

?b illustrate the features of the DC current we calculated it for the following 
numerical values of parameters: e ,  = O.l(eZ/C)a (where Q is an integer), which is 
similar to the expected experimental ratio between the singleelectron level spacing 
and the charging energy. The chemical potential difference between the leads 
A V  = 0.05(eZ/C) is kept constant. For simplicity we assumed a constant density 
of states in the leads, and hopping amplitudes 7'. In figure 1 we plot the DC part of 
the current I& as a function of pL for 1/p = 0.2(eZ/C), and 1/p = 0.05(e2/C). 
One notices that the DC current exhibits oscillations with a period corresponding 
to e Z / C  + Ac,, where Ace is the single-electron level spacing in the well. For 
intermediate temperatures A€, < 1/p < eZ/C,  the oscillations remain although the 
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pealcs are broadened. We can also see the irregular temperature behaviour [SI by 
taking variable hopping amplitudes, and density of states in the leads. 

We now tum to the calculation of the AC conductance. As is customary for AC 
currents, we may write I"' as composed of two parts: 

Iac = AE, cos(w,t) + BE, sin(w,t). Q 
We can define an impedance Z for the structure, such that A = e Re. Z, and B = 
-e Im Z, where according to the RamoShockley theorem [12,19] 2 = ( ZL+ ZR)/2 
In our case 

zL = i[xi%w - f i L  + wu) - X t . ( w  - /LL - w d l .  (8) 

ZR is calculated in a similar fashion. Using the definition of X in equation (5) we 
obtain the following result for the real part of 2,: 

x {&(@L- P W  + 'e f CA' 'k) + &(/LL- /lW + 
+ C N + w U - e k ) }  (9) 

where R(q.) is the density of states in the left lead. The imaginary part of 2, is 

ImzL = ~ C J d e b R ( e , ) T * , , g , , , [ n F ( C I )  - n F ( C e  + ' N ) l  
OL 

1 
{ P L - f i W  + 'a f EN 'k 

>. (10) 
1 - 

PL- PW + e, + EN + WO- ek 

ZR is derived in a corresponding way. Using the above results it is possible to 
calculate an explicit form for the two components of the AC current A and B 
appearing in equation (7). 

'Ib show the main features of both components we calculated them for the same 
parameter values as used for the DC case. We plot the results for I/@ = 0.Z(e2/C). 
Following the assumptions adopted for the DC calculation we consider a constant 
hopping amplitude g. In figure 2 we plot coefficient A as a function of fiL for 
different frequencies ww 

One may immediately observe that A for any wo has the underlying period of 
e2 /C  + Ar,. The amplitude of A shows a very interesting additional periodic 
dependence on the frequency. This new period is exactly Ae,. It is instructive 
to note that in addition to the information obtained through the bc conductance 
measurements, the real component of the AC conductance gives us a very precise 
probe into two different energy scales, effectively enabling us to perform singb- 
electron-level spectroscopy. Even for low frequencies it is possible to deduce the 
spacing of the singleelectron levels by following the amplitude changes of A, as a 
function of the frequency. The role of temperature is similar to the DC case. 
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Figure 2. The real pan of the AC mnducrance A (in arbitraly uniu) as a funclion of 
p~ for different extemal frequencies WO: NNe a, WO = 0; mwe b, WO = 0.02; NIW c, 
WO = 0.025,0.075; cume d, WO = 0.05; cuwe e, W O  = 0.07, where WO is given in units 
of e 2 / C .  As is described in lhe M lhe behaviour of A is periodic as a fundion of 
WO. giving A(WQ) = A(w0 + As,) . For this plot Ac, = 0.1. 

In figure 3 we present the dependence of B on pL for different frequencies. 
Again, the periodicity of eZ/C + Ae, is observed. The frequency changes the 
positions of the peaks as a function of pL, while the zeros remain at the same 
locations. As in the previous case, the spacing of the single-electron levels determines 
the period of those shifts. One should note that although A is non-zero even for 
wu = 0, the amplitude of B vanishes for that case. 

In aU the above discussion we have assumed that the electric field has an important 
contribution only if we consider its inauence on the barrier regime. This is correct 
as long as the frequency wu is smaller than the spacing of the single-electron levels 
in the well. Once the frequency is of order Ae,, the contribution to the well 
polarizability due to oscillations of the electrons in the well becomes important [20]. 
This phenomenon affects the AC conductance although no electrons are transferred 
through the barriers. The well polarizability will cause sharp peaks of width T in the 
real part of the conductance as a function of frequency, at values corresponding 
to wu = ea - e,,, which may also be used as an accurate way to observe the 
singleelectron spectra. The width of these additional peaks is small compared to 
Ae,, as must be assumed in order to obtain resonant energy levels in the well. 
Therefore, these additional peaks, which will appear only at the above mentioned 
discrete frequencies, will not wash out the previous discussed periodic behaviour even 
for wu > Ae,. 

It is essential at this point to re-evaluate the assumption concerning the existence 
of thermal equilibrium in the well. To obtain equilibrium the hopping rate should 
be lower than the thermalization rate (which is due to various scattering mechanisms 
in the well). This condition should be verified for the DC conductance. For real 
systems it was estimated [21] that the two rates are of the same order of magnitude. 
Therefore, we can expect to see some differences in the details of the peak shapes, but 
the qualitative behaviour will not change. In the linear response regime, the hopping 
rate for the AC current is proportional to gTE,, which for Eu < T/g should not 
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Fqurr 3. The imaginary part Ot the AC mnductance B (in the same arbilraly units as A), 
for different aternal frequencies WO: (a) WO = 0.W1, (b) WO = 0.02, (c) WO = 0.025, 
(d) WO = 0.05, (e) WO = 0.07. The periodicity m e2/C for each frequeno~ is wident. 
An additional periodic dependence MI the frequency is obsemed regarding the locations 
of the peaks as a function of ~ I L .  It is important Lo note that the amplitude of the paks  
increases for WO -+ too + Ar,. 

disturb the conditions for thermal equilibrium. 
Far example, an additional 

frequency scale has been experimentally observed for one-dimensional arrays of tunnel 
junctions [22]. In this paper, which considers the conductance of a quantum dot, only 
the linear regime was treated. A full quantum treatment of the non-linear regime 
would be of much interest. 

In conclusion, we have presented a description of the conductance of a double- 
bamer structure, taking into a m "  a multiple-level well with e-e interactions, finite 
temperature, DC bias, and an AC external field. We found that the AC conductance 
is composed of two parts, the real part which represents photon assisted hopping 
processes, and the imaginary part corresponding to the level broadening due to 
the external field. Both exhibit periodic behaviour in pL and U", with periods 
corresponding to the two different energy scales in the well. 

We would like to thank B L Altshuler, L P Horwitz, M Kastner, M Kaveh, K von 
Klitzing, E Kogan and U Meirav for useful discussions. 

Another point of interest is non-linear effects. 
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